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Abstract

The goal of our project is to answer Problem 3 of Andrew Sutherland’s Elliptic Curves

Problem Set 4 [1]. That is, we want to determine the probability that a random elliptic

curve defined over a finite field Fp has an Fp point of prime order `, where p is either a

fixed prime much larger than `, or a prime varying over some large interval. In order to do

so, we must review some key concepts and theorems to gain a thorough understanding of

elliptic curves. In the first part of this report, we will lead you through these key concepts

and present a summary of the background material we studied throughout the course of our

REU. In the second part, we will guide you through a problem on the probability of `-torsion

and share our findings. Our methods included deriving combinatorial formulas to describe

probabilities, as well as writing Sage scripts to verify our results.
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Chapter 1

Introduction to Elliptic Curves

1.1 The Projective Spaces

Definition 1.1.1 Projective Spaces Let k be a field, and let V be a vector space of

dimension n+ 1 over the field k. The projective space Pn(k) is the set of equivalence classes

of nonzero elements in the vector field V under the equivalence relation ∼ where v1 ∼ v2 if

v1, v2 ∈ V and there exists some λ ∈ k such that v1 = λv2.

The projective plane is the set P2(k) of all nonzero triples (x, y, z) ∈ k3 modulo the

equivalence relation defined above. Given a projective plane, the notation of a projective

point (x : y : z) denotes the equivalence class of (x, y, z) ∈ k3.

Remark 1.1.2 Let P2(k) be a projective plane over the field k. All points of the form

(x : y : 1) ∈ P2(k) form the affine plane of P2(k), where x, y ∈ k and 1 denotes the

multiplicative identity of k. All points of the form (x : y : 0) ∈ P2(k) form the line at infinity

of P2(k), where x, y ∈ k and 0 denotes the additive identity of k.

Projective plane Let A be the affine space of an algebraically closed field k. The projec-

tive plane of A is represented by P2(A) = A2 t A t {∞}.
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A point in the projective plane P2(A) is either a point on the plane A2, or a point on the

line at infinity A, or the point at infinity {∞}. A line in the projective plane P2(A) is either

the zero set of a polynomial f(x, y, z) = ax + by + cz = 0 where a, b, c are elements in the

algebraically closed field k, or the line at infinity.

Proposition 1.1.3 Let A be an affine space. Any two lines in the projective space P2(A) =

A2 t A t {0} intersect at exactly one point.

1. Two non-parallel lines in A2 intersect at some point in the affine plane A2.

2. Two parallel lines in A2 that are not parallel to y = 0 intersect at some point in the

line at infinity A.

3. Two parallel lines in A2 that are parallel to y = 0 intersect at the point at infinity

{∞}.

4. A line in A2 and the line at infinity intersect at some point in the line at infinity A.

Examples

1. Two non-parallel lines x + y = 0 and x − y = 0 incident at exactly one point [x : y :

z] = [0 : 0 : 1] on the affine plane in the real projective plane P2(R).

2. Two parallel lines x − y = 0 and x − y = z incident at exactly one point [x : y : z] =

[1 : 1 : 0] on the line at infinity in the real projective plane P2(R).

3. Two parallel lines y = 0 and y = z incident at the point at infinity [x : y : z] = [1 : 0 : 0]

in the real projective plane P2(R).

4. The line x + y = 0 and the line at infinity z = 0 incident at exactly one point

[x : y : z] = [−1 : 1 : 0] on the line at infinity in the real projective plane P2(R).
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(1) (2)

(3)

Definition 1.1.4 Conics Let k be an algebraically closed field. A conic in the projective

plane P2(k) is the zero set of a polynomial f(x, y, z) = ax2 + by2 + cz2 +dxy+ eyz+fxz = 0

where a, b, c, d, e, f are elements in the algebraically closed field k.

Consider the zero set of a given polynomial, the multiplicity of a root is the number of

occurrence of this root.

Proposition 1.1.5 Let k be an algebraically closed field. Any two conics in the projective

space P2(k) intersect at exactly four points with multiplicity counted. A conic and a line in

P2(k) intersect at exactly two points with multiplicity counted.

Examples Two conics x2 + y2 = z2 and x2 + (y− z)2 = z2 intersect at two distinct points

[x : y : z] = [
√

2 :
√

2 : 2] and [x : y : z] = [−
√

2 :
√

2 : 2] in P2(R), whereas two conics

x2 + y2 = z2 and x2 + (y − 2z)2 = z2 intersect at one point [x : y : z] = [0 : 1 : 1] in P2(R)

with multiplicity two.

Remark 1.1.6 This example appears to contradict the above proposition. However, the

field of real numbers R is not an algebraically closed field.
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If we consider the algebraic closure C of R, in the projective plane P2(C) the curves

x2 + y2 = z2 and x2 + (y − z)2 = z2 intersect at four points [
√

2 :
√

2 : 2], [−
√

2 :
√

2 : 2],

[1 : i : 0], [1 : −i : 0], and the curves x2 + y2 = z2 and x2 + (y − 2z)2 = z2 intersect at

[0 : 1 : 1] with multiplicity 2 as well as at [1 : i : 0] and [1 : −i : 0] with multiplicity 1.

Theorem 1.1.7 Bezout’s Theorem Consider an algebraically closed field k and two

homogeneous polynomials f, g ∈ k[x, y, z] that do not have a common factor. The degrees

of f and g are denoted by m and n, respectively. Then the curves f = 0 and g = 0 intersect

at exactly mn points in P2(k) with multiplicity counted.

Now that we have seen some important properties of plane projective curves, we will

examine a special kind of plane projective curves of out interest, elliptic curves.

Definition 1.1.8 k-rational Points Let k be an arbitrary field, and let k be the algebraic

closure of k. Let E be a projective curve defined as E = {(x : y : z) ∈ P2(k); f(x, y, z) = 0}

where f(x, y, z) ∈ k[x, y, z] is a polynomial. The k-rational points of E is defined as the set

E(k) = {(x : y : z) ∈ P2(k); f(x, y, z) = 0}, which is a subset of E.

Definition 1.1.9 Singular Point Let k be a field, and C and plane projective curve

defined over k. C is singular at a point P if ∂P
∂x

and ∂P
∂y

vanish simultaneously.

Definition 1.1.10 Smooth Projective Curve A plane projective curve is smooth if it

has no singular point.

Definition 1.1.9 Elliptic Curve Let k be a field. An elliptic curve over k is a smooth

plane projective curve of genus 1 with a k-rational distinguished point.
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1.2 The Group Law

Theorem 1.2.1 The Abelian Group Structure Consider an elliptic curve E defined

over an algebraically closed field. Fix a point O on the curve E as the identity point. Let P

be any point on E. If O and P is the same point, then the line OP denotes the tangent line

to E on P . The line OP and the curve E intersect at exactly three points with multiplicity

counted, where O and P are two of the three intersecting points. Then −P denote the third

intersecting point of the line OP and the curve E. Consider any two points A,B on E. If A

and B is the same point, then the line OP denotes the tangent line to E on A. The line AB

and the curve E intersect at exactly three points with multiplicity counted, where A and B

are two of the three intersecting points. Let C denote the third intersecting point of the line

AB and the curve E. The commutative binary operation + is defined by A+B = −C.

All points on the curve E form an abelian group with the commutative binary operation

+ defined above, where O is the identity element such that O + P = P for any point P

on E and −P is the inverse of P . The operation + is also associative, which means that

(A+B) + C = A+ (B + C) for any points A,B,C on E.

By the group law, any three points A,B,C on an elliptic curve in the projective plane

P2(k) satisfy the equation A+B + C = 0 if and only if A,B,C are collinear.

Definition 1.2.2 Weierstrass Equation Let k be a field whose characteristic is not 2

or 3. A Weierstrass equation is an equation of the form y2z − x3 − axz2 − bz3 = 0 where

a, b ∈ k. The corresponding affine equation in the affine plane z = 1 is y2 = x3 + ax+ b.

Proposition 1.2.3 Every smooth cubic in P2(k) can be transformed in a change of coor-

dinates to some Weierstrass equation.
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The Group Law in Algebraic terms Consider an elliptic curve E : y2z − x3 − axz2 −

bz3 = 0 with corresponding affine equation y2 = x3 + ax+ b. Let A : [x : y : z] = [x1 : y1 : 1]

and B : [x : y : z] = [x2 : y2 : 1] be two points on the embedded affine plane. Let the point

at infinity O : [0 : 1 : 0] be the identity point on the curve E, which is the only point on

E on the line of infinity. Given a point P : [x : y : z] on E, we have −P : [x : −y : z] and

O + P = P .

Case 1: Suppose x1 6= x2. Then m = y1−y2
x1−x2

is the slope of the line AB. Let y = mx+ t be

the equation of the line AB. Plugging it into the affine equation y2 = x3 + ax+ b, we get

x3 −m2x2 − cx− d = 0

for some coefficients c and d. Let C : [x : y : z] = [x3 : y3 : 1] be the third point incidents on

the elliptic curve E and the line PQ. Then x1, x2, x3 are the three roots of the polynomial

x3 −m2x2 − cx− d = 0, and therefore

x3 −m2x2 − cx− d = (x− x1)(x− x2)(x− x3).

Expanding the right hand side, we get x1 + x2 + x3 = m2. Therefore, we have

x3 = m2 − x1 − x2.

Since the slope

y3 − y1
x3 − x1

= m,

we have

y3 = m(x3 − x1) + y1.
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According to the simplified group law, we get A + B = −C = (x3,−y3), where m = y1−y2
x1−x2

,

x3 = m2 − x1 − x2, and y3 = m(x3 − x1) + y1.

Case 2: Suppose x1 = x2 and y1 = y2 6= 0. Then A and B is the same point, so the

line passing through A = B is tangent to the elliptic curve E on the point A = B. The

corresponding affine equation of the curve E : y2z−x3−axz2−bz3 = 0 is y2−x3−ax−b = 0

where z = 1 is the affine plane. Through derivative, we obtain (2y)dy − (3x2)dx− a = 0, so

the slope

m =
dy

dx
=

3x21 + a

2y1
.

For the same argument as in Case 1, we get A + B = −C = (x3,−y3), where m =
3x2

1+a

2y1
,

x3 = m2 − 2x1, and y3 = m(x3 − x1) + y1.

Case 3: Suppose x1 = x2 and y1 = −y2, including y1 = y2 = 0. Then the line AB is

parallel to the y-axis. Since every line parallel to the y-axis passes through the point at

infinity O : [0 : 1 : 0], we have A+B = O where O is the identity.

1.3 Isogeny of Elliptic Curves

Definition 1.3.1 Function Field Let k be a field, f a nonconstant homogeneous poly-

nomial from k[x, y, z] that is irreducible in k[x, y, z], and C be the plane projective curve

defined by f . The function field k(C) is the set of equivalence classes of rational functions

g/h such that:

i) g and h are homogeneous polynomials in k[x, y, z] of the same degree.

ii) h is not in the ideal generated by f

iii) g1/h1 is equivalent to g2/h2 if g1h2 − g2h1 ∈ (f)

Notice that k(C) is a ring under addition and multiplication of rational functions.
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Remark 1.3.2 Let k be a field and C a plane projective curve defined over k. Notice that

k(C) denotes the function field, whereas C(k) denotes the k-rational points of C.

Definition 1.3.3 Let k be a field, C a projective curve over k, and α ∈ k(C). An

element α ∈ k(C) is defined at a point P ∈ C(k) if it can be represented as g/h for some

g, h ∈ k[x, y, z] and h does not vanish at P .

Definition 1.3.4 Rational Map Let C1 and C2 be plane projective curves defined over a

field k. A rational map φ: C1 → C2 is a projective triple (φx : φy : φz) ∈ P2(k(C1)) such that

φx(P ), φy(P ), φz(P ) are defined ∀P ∈ C1(k) and not all zero, and (φx(P ) : φy(P ) : φz(P )) ∈

C2(k).

Definition 1.3.5 A rational map φ is regular or defined at P ∈ C1(k) is there exists a

nonzero element λ ∈ k(C1) such that λφx, λφy, λφz are all defined at P and do not vanish

simultaneously.

Definition 1.3.6 Morphism Between Plane Projective Curves A rational map that

is defined everywhere is called a morphism or a regular map.

Theorem 1.3.7 Every rational map from a smooth projective curve to a projective curve

is a morphism. [1]

Theorem 1.3.8 A morphism of projective curves is either surjective or constant. [1]

Definition 1.3.9 Isogeny An isogeny φ: E1 → E2 of elliptic curves defined over k is

a non-constant rational map that sends the distinguished point of E1 to the distinguished

point of E2, which induces a group homomorphism E1(k)→ E2(k).
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Lemma 1.3.10 Standard Form of Isogeny Let E1 and E2 be elliptic curves over k,

and let α : E1 → E2 be an isogeny. Then α can be defined by an affine rational map of the

form

α(x, y) = (
u(x)

v(x)
, y
s(x)

t(x)
)

where u, v, s, t ∈ k[x] with u, v coprime to each other and s, t coprime to each other. The

proof of this lemma can be found in lecture 5, page 7 of [1].

Definition 1.3.11 Degree and Separability of Isogenies Let α(x, y) = (u(x)
v(x)

, y s(x)
t(x)

) be

an isogeny written in standard form, the degree of α is deg(α) := max{deg(u), deg(v)}, and

α is separable if d
dx

u(x)
v(x)

= 0, and inseparable otherwise.

Examples i) The multiplication-by-2 map: Let E be an elliptic curve over a field k and

writtenin short Weistrass form y2 = x3 +Ax+B. The multiplication-by-2 map is φ: E → E

where P 7→ 2P = P + P .

Recall the group law in algebraic terms, we can represent the doubling of the points with

the following rational functions

φx(x, y) =
(3x2 + A)2 − 8xy2

4y2

phiy(x, y) =
12xy2(3x2 + A)− (3x2 + A)3 − 8y4

8y3

We can find the standard form, which is

α(x, y) = (
x4 − 2Ax2 − 8Bx+ A2

4(x3 + Ax+B)
,
x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− A3 − 8B2

8(x3 + Ax+B)2
y)

the calculation is omitted, see [1] lecture 5, page 10. The degree of this isogeny is 4, and it

is separable.

We can further extend the result to a multiplication-by-n map. The multiplication-by-n
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map φ : E → E where P 7→ nP has degree n2. It is separable if and only if n is not divisible

by the chracteristic of the field k, the proof can be found in [1] lecture 6, page 14.

ii) The Frobenius endomorphism: Consider the finite field Fp where p is a prime. Let E be

an elliptic curve over Fp. The Frobenius endomorphism of E is the map πE : (x : y : z) 7→

(xp, yp, zp).

First let’s show that it is a morphism. Consider E in Weistrass form, y2z = x3+Axz2+Bz3.

Raise both sides to the pth power, we have:

(y2z)p = (x3 + Axz2 +Bz3)p

(yp)2zp = (xp)3 + Axp(zp)2 +B(zp)3

the calculation is omitted, see [1] lecture 5, page 10. Therefore (xp : yp, zp) ∈ E(Fp, and we

have Ap = A, Bp = B since A,BinFp.

The standard form of the Frobenius endomorphism of an elliptic curve E over a field Fp is

πE(x, y) = (xp, (x3 + Ax+B)(p−1)/2y)

we can see that the degree p, and it is inseparable since (xp)′ = pxp−1 = 0 in Fp

1.4 The Endomorphism Ring

Definition 1.4.1 Degree of Isogeny Let α be a non-zero isogeny between elliptic curves

with a standard affine form α(x, y) = (u(x)
v(x)

, s(x)
t(x)

y). The degree of α is defined as the maximum

of the degree of u(x) and the degree of v(x).

For example, if u(x) is a polynomial of degree 2 and v(x) is a polynomial of degree 3,

then the degree of α is max{2, 3} = 3.
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Theorem 1.4.2 Decomposition of Isogeny Let E1 and E2 be elliptic curves over an

algebraically closed field k of characteristic p > 0. Let α : E1 → E2 be an isogeny between

elliptic curves. Then α can be represented as the composition of some separable isogeny and

some power of the p-power Frobenius map defined by π : (x, y, z) 7→ (xp, yp, zp).

Proposition 1.4.3 Let α, β and γ be three isogenies where α = β ◦ γ. Then deg(α) =

deg(β) · deg(γ).

Lemma 1.4.4 If α is an isogeny over an algebraically closed field k of characteristic p > 0

and α = αsep ◦ πn where αsep is a separable isogeny and π is the p-power Frobenius map

π : (x, y, z) 7→ (xp, yp, zp), then following from the previous proposition and deg(π) = p, we

have deg(α) = deg(αsep) · pn.

Theorem 1.4.5 The order of the kernel of an isogeny is its separable degree.

This is because the p-power Frobenius map π : (x, y, z) 7→ (xp, yp, zp) has trivial kernel,

and the order of the kernel of a separable isogeny is its degree.

Theorem 1.4.6 Let E be an elliptic curve over an algebraically closed field k. Let G be

a finite subgroup of E(k). Then there exists a separable isogeny φ : E → E0 whose kernel is

G, where the elliptic curve E0 and the separable isogeny φ are unique up to isomorphism.

That is, if φ1 : E → E1 and φ2 : E → E2 are separable isogenies with the same kernel,

then there exists a group isomorphism i : E1 → E2 where φ2 = i ◦ φ1.

Definition 1.4.7 n-torsion subgroup Let E be an elliptic curve over an algebraically

closed field k. The n-torsion subgroup of E is the kernel of the multiplication-by-n map

defined by taking each point P in E to the point nP in E, and it is denoted by E[n] = {P ∈

E : nP = 0}.
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Lemma 1.4.8 Let E be an elliptic curve over an algebraically closed field k of characteristic

p > 0. Let E[n] be the n-torsion subgroup of E.

1. If e is a positive integer, then the pe-torsion subgroup E(pe) is either trivial or isomor-

phic to Z/peZ.

2. If ` is a prime other than p, then the `e-torsion subgroup E(`e) is isomorphic to

Z/`eZ⊕ Z/`eZ.

Proposition 1.4.9 Let E be an elliptic curve over an algebraically closed field k of char-

acteristic p > 0. Then every finite subgroup of E(k) can be written as the direct sum of at

most two cyclic groups whose orders are not both divisible by p.

Corollary 1.4.10 If k = Fq is a finite field of characteristic p > 0, then E(Fq) can be

written as the direct sum of Z/mZ and Z/nZ where m is divisible by n and m is not

divisible by p.

Definition 1.4.11 Group of homomorphisms Let E1 and E2 be elliptic curves over an

algebraically closed field k. The isogenies from E1 to E2 form an abelian group Hom(E1, E2)

with the zero morphism as the identity element.

For any two elements α, β ∈ Hom(E1, E2) and any point P ∈ E1, the addition is defined

by (α + β)(P ) = α(P ) + β(P ).

Proposition 1.4.12 For any integer n, let [n] : E1 → E2 denote the multiplication-by-n

map in the abelian group Hom(E1, E2). Then [n] is in the center of Hom(E1, E2).

Definition 1.4.13 Endomorphism ring Let E be an elliptic curve over an algebraically

closed field k. All endomorphisms from E to E forms an endomorphism ring End(E) =

Hom(E,E).
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For any two elements α, β ∈ End(E) and any point P ∈ E, the addition is defined by

(α + β)(P ) = α(P ) + β(P ) and the multiplication is defined by (α ◦ β)(P ) = α(β(P )).

Matrix representation Let E be an elliptic curve over an algebraically closed field k of

characteristic p > 0. Let n be some positive integer that is not divisible by p. Followed

from Lemma 1.4.8, the n-torsion subgroup E(n) is isomorphic to Z/nZ⊕Z/nZ. Thus there

exists two elements P1 and P2 from the n-torsion subgroup such that any element in the

n-torsion subgroup can be written uniquely as the linear combination of P1 and P2. For any

endomorphism α from E to E, let αn denote the restriction of α to the n-torsion subgroup.

Since α is a group homomorphism, it maps n-torsion points to n-torsion points, and thus

αn is an endomorphism of E[n]. For a fixed basis < P1, P2 >, the subgroup αn can be

represented as a 2× 2 matrix

a b

c d

 where a, b, c, d ∈ Z/nZ.

Theorem 1.4.14 Let α be an endomorphism of an elliptic curve E/k and let n be a

positive integer prime to the characteristic of k. Then

trα ≡ trαn modn and degα ≡ detαn modn

Proof. See [1, Lecture 7, Theorem 7.20]
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Chapter 2

Problem on Probability of `-Torsion

2.1 Preface

Recall that the goal of our project is to determine the probability that a random elliptic

curve E/Fp has an Fp-point of prime order `, where p is either a fixed prime much larger

than `, or a prime varying over some large interval.

To clarify, a random elliptic curve E/Fp just means that we choose a random A and

B in the finite field Fp for our curve equation y2 = x3 + Ax + B. In order to answer the

question, we’ll establish some important notations and heuristic assumptions that we will

refer to throughout the rest of the report:

Notation: Let π be the Frobenius endomorphism of E, and π` ∈ GL2(F`) denote the

matrix corresponding to the action of the Frobenius endomorphism of E on the `-torsion

subgroup E[`]. See Definition 1.4.1.

Assumption 2.1.1: π` is uniformly distributed over GL2(F`) as E varies over elliptic

curves defined over Fp and p varies over prime integers in some large interval.

Assumption 2.1.2: When varying p over some large interval, every value of p mod`

occurs equally often.
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It can be proven that the distribution of π` converges to the uniform distribution on

GL2(F`) as p → ∞. [1] Since our problem is more relevant for large prime p, it is an

appropriate assumption.

We will divide the problem into three steps...

2.2 Step 1

Our first step is to determine the probability that E(Fp)[`] = E[`], both for a fixed p

and varying p over some large interval. Recall that the `-torsion subgroup E[`] equals

{P ∈ E(Fp) : ` · P = 0}, so it consists of the Fp rational points on E with order dividing `.

E(Fp)[`] equals {P ∈ E(Fp) : ` · P = 0}, the set of Fp points on E with order `. You can

think of E(Fp)[`] as the intersection E[`] ∩ E(Fp).

Theorem 2.2.1: E(Fp)[`] = E[`] if and only if π fixes E[`] and thus the matrix π` is

the identity matrix. [1]

Theorem 2.2.1 implies that to determine the probability that E(Fp)[`] = E[`], we can

look at the probability that π` is the identity matrix. We must consider this for fixed and

varying p.

For fixed p, Theorem 1.4.23 implies that detπ` ≡ degπ mod` since π is an endomorphism

of E and ` is prime to p. Since degπ = p, detπ` ≡ p mod`. So, we need to find the

number of matrices in GL2(F`) that have determinant p mod`. We can write GL2(F`) as

{

a b

c d

 | a, b, c, d ∈ F` and ad− bc 6= 0}

Then we want ad− bc ≡ p mod`:

We can consider two cases, when a = 0 and when a 6= 0:

Case 1) a = 0: When a = 0, bc ≡ p mod`. Since (a, b) cannot equal (0, 0), and

a, b, c, d ∈ F` there are ` − 1 options for b. There exists a unique c ∈ F` such that c = p
b
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mod`, and thus there is 1 option for c. Since a = 0, d can be any number, so there are `

options for d. Therefore, there are a total of `(`− 1) possibilities.

Case 2) a 6= 0: When a 6= 0, there are ` − 1 options for a, and thus ` options for b. In

order for

a b

c d

 to be invertible, (c, d) must be linearly independent to (a, b), but since

a 6= 0, there are ` options for c. There exists a unique d ∈ F` such that ad ≡ (p + bc)

mod`, namely d = p+bc
a
∈ F`, and thus there is 1 option for d. Therefore, there are a total

of `2(`− 1) possibilities.

So all together, there are `(` − 1) + `2(` − 1) = (` − 1)(`2 + l) = `(`2 − 1) possibilities,

and thus the probability

Prfixed(E(Fp)[`] = E[`]) is equal to 1
`(`2−1) .

For a p varying over some large interval, we can consider any matrix in GL2(F`), since

we assumed every value of p mod` occurs equally often. Again, we’ll write GL2(F`) as

{

a b

c d

 | a, b, c, d ∈ F` and ad− bc 6= 0}. There are `2 possible values (a, b), but in order

for the matrix to be invertible (a, b) cannot equal (0, 0). Thus there are `2−1 options. Then

(c, d) can be anything except for a scalar multiple of (a, b), so we have `2 − ` options since

there are ` possible scalar multiples of (a, b). Therefore there are (`2− 1)(`2− `) matrices in

GL2(F`), and the probability that π` is the identity is 1
(`2−1)(`2−`) .

We use Sage to compute the probability when ` is bounded by 50, 100, 200, 500 with the

following code, where p is the probability, and m is set to be the bound:

1 p=1.0

2 m = 50

3 P=prime_range (0,m)

4

5 for l in P:
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6 p = p*((l*(l**2-1) -1)/(l*(l**2 -1)))

7 print(p)

which returns:

1 for m = 50, probability = 0.788194911989887

2 for m = 100, probability = 0.788170493994749

3 for m = 200, probability = 0.788164003202117

4 for m = 500, probability = 0.788162725606979

2.3 Step 2

Our second step is proving the following lemma, which is essential to determining the prob-

ability of `-torsion.

Lemma 2.3.1: A necessary and sufficient condition for E(Fp)[`] 6= {0} is

trπ` ≡ detπ` + 1 (mod`).

In order to prove this lemma, we will use the following theorems:

Theorem 2.3.2 Let E/k be an elliptic curve. Every finite subgroup of E(k) can be

written as the direct sum of at most two cyclic subgroups, at most one of which has order

divisble by the characteristic k. In particular, when k = Fq is a finite field of characteristic

p we have

E(Fq) ∼= Z/mZ⊕ Z/nZ

for some positive integers m,n with m|n and p - m.

Proof. See [1, Lecture 7, Corollary 7.4]

Hasse’s Theorem: Let E/Fq be an elliptic curve over a finite field. Then

#E(Fq) = q + 1− trπ.
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Proof. See [1, Lecture 8, Theorem 8.3]

Now we will prove Lemma 2.3.1.

Proof. Recall E(Fp)[`] = {P ∈ E(Fp) : `P = 0}.

The multiplication-by-` map [`] acts on E(Fp) as follows:

[`] : E(Fp)→ E(Fp)

(x, y) 7→ (`x, `y)

Thus, E(Fp)[`] = {(x, y) ∈ E(Fp) : (`x, `y) = 0}

By Theorem 2.3.2, E(Fp) ∼= Z/mZ⊕Z/nZ, where m|n, p - m. In order for E(Fp)[`] 6= {0}

to hold, we need some (x, y) 6= (0, 0) ∈ E(Fp)[`].

Since ` is prime, there exists a non-zero (x, y) ∈ E(Fp)[`] if and only if either x or y is

non-zero and has order `, which is true if and only if `|m or `|n. This is in turn equivalent

to `|m · n.

Since E(Fp) is a direct sum, #E(Fp) = m · n.

By Hasse’s Theorem,

#E(Fp) = p+ 1− trπ

So `|m · n ⇐⇒ l|(p+ 1− trπ) ⇐⇒ trπ ≡ p+ 1 (mod`)

By Theorem 1.4.23, trπ` ≡ trπmod` and detπ` ≡ degπ ≡ pmod`, so

trπ ≡ p+ 1 (mod`) ⇐⇒ trπ` ≡ degπ + 1 (mod`) ⇐⇒ trπ` ≡ detπ` + 1 (mod`)

2.4 Step 3

Our third and final step is to determine the probability that E(Fp) contains a point of order

` (i.e. E(Fp)[`] 6= {0}). To do this, we will:

• Derive a combinatorial formula for this probability as a rational function in `, and
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• Create a Sage script to verify our formula.

To derive a combinatorial formula for the probability that E(Fp) contains a point of order

`, we need to count the matrices π` in GL2(F`) such that Lemma 2.3.1 is satisfied, i.e.

#π` such that trπ` ≡ detπ` + 1 (mod`)

Again, we have to consider this condition for a fixed value of p and p varying over a

large interval.

For a fixed p, we need to consider two cases: when p ≡ 1 mod` and when p 6≡ 1 mod`.

Case 1: For p ≡ 1 mod`, since detπ` ≡ pmod`, we want detπ` = ad− bc ≡ 1 mod`, and

we want trπ` = a+ d ≡ 2 mod `. We can consider three sub cases. When a, c 6= 0, there are

`− 1 options for a, and d depends on a since a+ d = 2, so that leaves 1 option for d. c 6= 0

implies that there are `−1 options for c, and since bc ≡ ad−1 mod`, there is a unique value

for b, so 1 option. Thus when a, c 6= 0, we have (`− 1)2 possibilities.

If a = 0 and c 6= 0, we must have d = 2. Since c 6= 0 there are ` − 1 options for c, and

given −bc ≡ 1 mod`, one unique value left for b. So, when a = 0 and c 6= 0, we have ` − 1

options.

When a 6= 0 and c = 0, there are ` options for b. We have ad ≡ 1 mod`, and since

a + d = 2, then (2 − d)(d) ≡ 1 mod` =⇒ d2 − 2d + 1 ≡ 0 mod` =⇒ (d − 1)(d − 1) ≡ 0

mod`. This implies that d = 1, and thus a = 1. So when a 6= 0 and c = 0, we have ` options.

If we add these all together, we get ` + (` − 1) + (` − 1)2 = `2 possibilities. From Step 1,

we know that there are `(`2 − 1) matrices in GL2(F`) with determinant p mod`. Thus the

probability

Prfixed p≡1(E(Fp)[`] 6= {0}) = `2

`(`2−1) = `
`2−1

Case 2: For p 6≡ 1 mod`, we get a similar answer. For our first two cases, a, c 6= 0 and a = 0

and c 6= 0, the same argument holds.

However, when a 6= 0 and c = 0, we want to solve the set of equations in F`
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ad = p and

a+ d = p+ 1

This implies (p+1−d)(d) = p. Rewriting this gives d2−(p+1)(d)+p = (d−1)(d−p) = 0.

The roots are d = 1 and d = p, so if p ≡ 1 mod` there is one root, otherwise there are two

roots. There are ` options for b, and thus when p 6≡ 1 mod` there are 2` options. Adding

together all our options, we get 2`+ (`− 1) + (`− 1)2 = `2 + `, and thus the probability

Prfixed p6≡1(E(Fp)[`] 6= {0}) = `2+`
`(`2−1) = 1

`−1

For varying p, we use the probabilities we just found for fixed p and incorporate the

probabilities of the occurrence of each p mod`. We assumed each value of p mod` occurs

equally often, so the probability that p ≡ 1 mod` is

Pr(p ≡ 1) = 1
`−1

And the probability that p 6≡ 1 mod` is

Pr(p 6≡ 1) = `−2
`−1

Therefore our total probability of `-torsion for varying p is

Pr(`-torsion) = `
`2−1 ∗ ( 1

`−1) + 1
`−1 ∗ ( `−2

`−1) = `2−2
`3−`2−`+1

In order to test this formula, we wrote a Sage script that counted the number of matrices

π` in GL2(F`) such that Lemma 2.3.1 is satisfied, i.e.

#π` such that trπ` ≡ detπ` + 1 (mod`).

With the following implementation, we can compute our results:

1 l = 3

2 k = GL(2,GF(l))

3 lst = []

4 for i in k:

5 lst.append(i)
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6 len = len(lst)

7

8 varyingp = 0

9 for j in range(1,l):

10 cnt = 0.0

11 total = 0

12 for i in k:

13 A = matrix(i)

14 d = A.determinant ()

15 t = A.trace()

16 if d == j :

17 total += 1

18 if t == j+1:

19 cnt += 1

20 prob = cnt/total

21 print("For p =" + str(j) + mod l", cnt =" + str(cnt) + ", total =" +

str(total))

22 print("prob = "+ str(prob))

23 varyingp += cnt

24

25 prob2 = varyingp/len

26 print("For varying p, probability of " + str(l) + "-torsion is " + str(

prob2))

which returns

1 For p =1 mod l, cnt =9.00000000000000 , total =24

2 prob = 0.375000000000000

3 For p =2 mod l, cnt =12.0000000000000 , total =24

4 prob = 0.500000000000000

5 For varying p, probability of 3-torsion is 0.437500000000000

We can set m = 5, which returns:

1 For p =1 mod l, cnt =25.0000000000000 , total =120
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2 prob = 0.208333333333333

3 For p =2 mod l, cnt =30.0000000000000 , total =120

4 prob = 0.250000000000000

5 For p =3 mod l, cnt =30.0000000000000 , total =120

6 prob = 0.250000000000000

7 For p =4 mod l, cnt =30.0000000000000 , total =120

8 prob = 0.250000000000000

9 For varying p, probability of 5-torsion is 0.239583333333333

and for m = 7,

1 For p =1 mod l, cnt =49.0000000000000 , total =336

2 prob = 0.145833333333333

3 For p =2 mod l, cnt =56.0000000000000 , total =336

4 prob = 0.166666666666667

5 For p =3 mod l, cnt =56.0000000000000 , total =336

6 prob = 0.166666666666667

7 For p =4 mod l, cnt =56.0000000000000 , total =336

8 prob = 0.166666666666667

9 For p =5 mod l, cnt =56.0000000000000 , total =336

10 prob = 0.166666666666667

11 For p =6 mod l, cnt =56.0000000000000 , total =336

12 prob = 0.166666666666667

13 For varying p, probability of 7-torsion is 0.163194444444444

Here are the formula results:

f(`) = `2−2
`3−`2−`+1

f(3) = 7
16

f(5) = 23
96

f(7) = 47
288

This shows that our formulas were correct. Therefore, the probability that E(Fp) contains

a point of order ` for a fixed prime p is
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Prfixed(E(Fp)[`] 6= {0}) =


`

`2−1 if p ≡ 1 mod`

1
`−1 if p 6≡ 1 mod`

And the probability that E(Fp) contains a point of order ` for a varying prime p over a

large interval is

Prvarying(E(Fp)[`] 6= {0}) = `2−2
`3−`2−`+1

2.5 Step 4

Now to validate our formula from the previous step, we will pick two random primes p1, p2

from the range [229, 230], with p1 ≡ 1 mod ` and p2 6≡ 1 mod `. We next randomly generate

1000 elliptic curves over Fp1 and Fp2 , and count how often the number of Fpi-rational points

is divisible by ` for i = 1, 2

1 ell=3

2 p1=0;p2=1

3 while p1%ell !=1:

4 p1=random_prime (2^30,True ,2^29)

5 while p2%ell ==1:

6 p2=random_prime (2^30,True ,2^29)

7 print (p1 ,p2)

8

9 F1=GF(p1)

10 num1=0

11 for j in range (1 ,1000):

12 aa=F1.random_element (); bb=F1.random_element ()

13 if (EllipticCurve ([aa ,bb]).order())%ell == 0:

14 num1=num1+1

15 F2=GF(p2)

16 num2=0
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17 for j in range (1 ,1000):

18 aa=F2.random_element (); bb=F2.random_element ()

19 if (EllipticCurve ([aa ,bb]).order())%ell == 0:

20 num2=num2+1

21 print ("the experimental probability when p1="+str(p1)+", l="+str(ell)+",

with p1 mod l =1 is "

22 + str(num1 /1000.0)+ "\n"+

23 "the experimental probability when p2="+str(p2)+", l="+str(ell)+",

with p2 mod l !=1 is "

24 + str(num2 /1000.0)

25 )

for ` = 3, we have

1 p1 = 754748737 p2 = 868213487

2 the experimental probability when p1 =754748737 , l=3, with p1 mod l =1 is

0.359000000000000

3 the experimental probability when p2 =868213487 , l=3, with p2 mod l !=1 is

0.499000000000000

for ` = 5, we have

1 p1 = 637617971 p2 = 623986247

2 the experimental probability when p1 =637617971 , l=5, with p1 mod l =1 is

0.189000000000000

3 the experimental probability when p2 =623986247 , l=5, with p2 mod l !=1 is

0.248000000000000

for ` = 7, we have

1 p1 = 603220031 p2 = 950453551

2 the experimental probability when p1 =603220031 , l=7, with p1 mod l =1 is

0.152000000000000

3 the experimental probability when p2 =950453551 , l=7, with p2 mod l !=1 is

0.165000000000000

Since the primes and the elliptic curves were randomly generated, each execution might
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return slightly different value, but we can see that it is fairly close to our prediction from

previous step. Therefore the formulas we derived are appropriate under our heuristic as-

sumptions.
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